Airy Kernel and Painlevé II
نویسندگان
چکیده
We prove that the distribution function of the largest eigenvalue in the Gaussian Unitary Ensemble (GUE) in the edge scaling limit is expressible in terms of Painlevé II. Our goal is to concentrate on this important example of the connection between random matrix theory and integrable systems, and in so doing to introduce the newcomer to the subject as a whole. We also give sketches of the results for the limiting distribution of the largest eigenvalue in the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Symplectic Ensemble (GSE). This work we did some years ago in a more general setting. These notes, therefore, are not meant for experts in the field.
منابع مشابه
Higher order analogues of the Tracy-Widom distribution and the Painlevé II hierarchy
We study Fredholm determinants related to a family of kernels which describe the edge eigenvalue behavior in unitary random matrix models with critical edge points. The kernels are natural higher order analogues of the Airy kernel and are built out of functions associated with the Painlevé I hierarchy. The Fredholm determinants related to those kernels are higher order generalizations of the Tr...
متن کاملGenerating Function Associated with the Rational Solutions of the Painlevé II Equation
We consider the Hankel determinant representation for the rational solutions of the Painlevé II equation. We give an explicit formula for the generating function of the entries in terms of logarithmic derivative of the Airy function, which by itself is a particular solution of the Painlevé II equation.
متن کاملCasorati Determinant Solutions for the Discrete Painlevé-II Equation
We present a class of solutions to the discrete Painlevé-II equation for particular values of its parameters. It is shown that these solutions can be expressed in terms of Casorati determinants whose entries are discrete Airy functions. The analogy between the τ function for the discrete PII and the that of the discrete Toda molecule equation is pointed out.
متن کاملHypergeometric solutions to the q-Painlevé equations
It is well-known that the continuous Painlevé equations PJ (J=II,. . .,VI) admit particular solutions expressible in terms of various hypergeometric functions. The coalescence cascade of hypergeometric functions, from the Gauss hypergeometric function to the Airy function, corresponds to that of Painlevé equations, from PVI to PII [1]. The similar situation is expected for the discrete Painlevé...
متن کاملar X iv : 0 70 7 . 32 35 v 1 [ m at h - ph ] 2 1 Ju l 2 00 7 Airy Functions for Compact Lie Groups
The classical Airy function has been generalised by Kontsevich to a function of a matrix argument, which is an integral over the space of (skew) hermitian matrices of a unitary-invariant exponential kernel. In this paper, the Kontsevich integral is generalised to integrals over the Lie algebra of an arbitrary connected compact Lie group, using exponential kernels invariant under the group. The ...
متن کامل